El Programa aborda dos líneas de investigación: Biofísica de Macromoléculas y Biología Computacional. En nuestro programa ellas están relacionadas a, pero no son exclusivas de, la Neurociencia.
- Biofísica de Macromoléculas: El estudio de las interacciones moleculares que ocurren en y entre las principales moléculas biológicas es una de las principales aplicaciones de la Biofísica, la cual busca explicar fenómenos biológicos a partir de las leyes de la física. Esta búsqueda ha llevado una fracción mayoritaria de biofísicos a enfocarse en lo que ocurre a nivel de proteínas y, entre éstas, las involucradas en el transporte de sustancias a través de las membranas celulares: proteínas involucradas en sinapsis, endo/exocitosis y los fenómenos de transducción sensorial. Otra de las moléculas biológicas que llaman la atención de biofísicos son las proteínas encargadas de la conducción de iones a través de la membrana celular, los canales de iones. Altamente regulados y selectivos en sus propiedades de conducción, son los principales responsables de la actividad eléctrica de las neuronas y de un sinnúmero de procesos de secreción y regulación homeostática del ambiente intracelular. Además, se han descrito una serie de patologías (canalopatías) que dependen de cambios mininos en su estructura. En nuestro claustro, se estudian de forma activa los determinantes moleculares del funcionamiento de estas proteínas: su conducción, selectividad, regulación por agonistas y su malfuncionamiento en varias patologías. Experimentalmente, esta línea de investigación demanda el uso de avanzadas técnicas de medición de interacciones físicas a escala, muchas veces, de molécula única: fluorimetría, FRET, L-RET, microscopía de fuerza atómica, pinzas ópticas, entre otras.
- Biología Computacional, la cual contempla entre sus ramas el Modelamiento y Simulación Molecular y la Neurociencia Computacional. Modelamiento y Simulación Molecular: esta disciplina desarrolla simulaciones numéricas del comportamiento de grandes moléculas, desde fármacos hasta proteínas e incluso membranas lipídicas. Utilizando principios de mecánica clásica, química cuántica y termodinámica estadística, entre otros, las simulaciones entregan predicciones sobre interacciones intra e intermoleculares que son vitales para el diseño inteligente de nuevos experimentos y también el diseño racional de fármacos. Como es de esperar, esta línea tiene una sinérgica colaboración con la biofísica de proteínas. Neurociencia Computacional: Esta línea aplica técnicas avanzadas de computación, estadística y matemáticas al análisis de la actividad cerebral en todos sus niveles. De esta manera, simulaciones numéricas de sistemas dinámicos permiten conectar el comportamiento de los canales de iones a la actividad eléctrica de neuronas y redes neuronales. Por otra parte, análisis estadísticos y ajustes a modelos matemáticos permiten analizar el resultado de experimentos que generan datos con volúmenes crecientes y al mismo tiempo de alta dimensionalidad: registros en multi-electrodos y electroencefalografía. Las herramientas mencionadas, en activo desarrollo a nivel mundial, pueden ser la clave para comprender los mecanismos de codificación neuronal y la manera en la que los circuitos neuronales analizan información sensorial para tomar decisiones.